
Priority Queues and Heaps
Lecture 21 (Data Structures 5)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Introducing the
Priority Queue

The Priority Queue Interface

Useful if you want to keep track of the “smallest”, “largest”, “best” etc. seen so far.

/** (Min) Priority Queue: Allowing tracking and removal of the
 * smallest item in a priority queue. */
public interface MinPQ<Item> {

/** Adds the item to the priority queue. */
public void add(Item x);
/** Returns the smallest item in the priority queue. */
public Item getSmallest();
/** Removes the smallest item from the priority queue. */
public Item removeSmallest();
/** Returns the size of the priority queue. */
public int size();

}

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Using a PQ

Usage Example: Recording the Highest Energy Particles

Suppose we have a particle detector that records the energy of incoming particles.

Suppose we want to record the M highest energy particles in a given day.

Naive approach: Create a list of all particles detected during the day. Sort it using a
particle energy comparator. Return the M particles that have highest energy.

Naive Implementation: Store and Sort

Potentially uses a huge amount of memory Θ(N), where N is number of particles.

public List<Particle> highestEnergyParticles(Detector det, int M) {
 ArrayList<Particle> allParticles = new ArrayList<>();

 for (Timer timer = new Timer(); timer.hours() < 24;) {
 allParticles.add(det.getNextParticle());
 }

 Comparator<String> cmptr = new EnergyComparator();
Collections.sort(allParticles, cmptr, Collections.reverseOrder());

return allParticles.sublist(0, M);
}

Naive Implementation: Store and Sort

Potentially uses a huge amount of memory Θ(N), where N is number of particles.
● Goal: Do this in Θ(M) memory using a MinPQ.

public List<Particle> highestEnergyParticles(Detector det, int M) {
 ArrayList<Particle> allParticles = new ArrayList<>();

 for (Timer timer = new Timer(); timer.hours() < 24;) {
 allParticles.add(det.getNextParticle());
 }

 Comparator<String> cmptr = new EnergyComparator();
Collections.sort(allParticles, cmptr, Collections.reverseOrder());

return allParticles.sublist(0, M);
}

 MinPQ<Particle> highEnergyParticles = new HeapMinPQ<>(cmptr);

Try to Solve Using a MinPQ

Potentially uses a huge amount of memory Θ(N), where N is number of particles.
● Goal: Do this in Θ(M) memory using a MinPQ.

public List<Particle> highestEnergyParticles(Detector det, int M) {
 Comparator<Particle> cmptr = new EnergyComparator();
 MinPQ<Particle> highEnergyParticles = new HeapMinPQ<>(cmptr);
 for (Timer timer = new Timer(); timer.hours() < 24;) {

// Do something with det.getNextParticle(); ??
 ...
}

 MinPQ<Particle> highEnergyParticles = new HeapMinPQ<>(cmptr);

Better Implementation: Track the M Best

Can track top M transactions using only M memory. API for MinPQ also makes
code very simple (don’t need to make explicit comparisons).

public List<Particle> highestEnergyParticles(Detector det, int M) {
 Comparator<Particle> cmptr = new EnergyComparator();
 MinPQ<Particle> highEnergyParticles = new HeapMinPQ<>(cmptr);
 for (Timer timer = new Timer(); timer.hours() < 24;) {
 highEnergyParticles.add(det.getNextParticle());
 if (highEnergyParticles.size() > M)
 { highEnergyParticles.removeSmallest(); }
 }
 ArrayList<String> returnList = new ArrayList<String>();
 while (highEnergyParticles.size() > 0) {
 returnList.add(highEnergyParticles.removeSmallest());
 }
 return returnList;
}

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Some Bad
Implementations

How Would We Implement a MinPQ?

Some possibilities:
● Ordered Array
● Bushy BST: Maintaining bushiness is annoying. Handling duplicate priorities

is awkward.
● HashTable: No good! Items go into random places.

Ordered Array Bushy BST Hash Table Heap

add Θ(N) Θ(log N) Θ(1)

getSmallest Θ(1) Θ(log N) Θ(N)

removeSmallest Θ(N) Θ(log N) Θ(N)

Caveats Dups tough

Worst Case Θ(·) Runtimes

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Heap Definitions

Introducing the Heap

BSTs would work, but need to be kept bushy and duplicates are awkward.

Binary min-heap: Binary tree that is complete and obeys min-heap property.
● Min-heap: Every node is less than or equal to both of its children.
● Complete: Missing items only at the bottom level (if any), all nodes are as far

left as possible.

0

5

8

0

8

1

26

5

8

0

8

1

2

5

4

0

8

1

6
Incomplete Lacks min-heap property

5

8

0

8

1

8

Heap Comprehension Test: yellkey.com/true

How many of these are min heaps?
A. 0
B. 1
C. 2
D. 3
E. 4

8

8

8

8

8

8

6

8

5

7

2

3

4

0

7

95

1

0

Heap Comprehension Test

How many of these are min heaps?
A. 0
B. 1
C. 2
D. 3
E. 4

8

8

8

8

8

8

6

8

5

7

2

3

4

0

7

95

1

0

Incomplete Lacks min-heap property

What Good Are Heaps?

Heaps lend themselves very naturally to implementation of a priority queue.

Hopefully easy question:
● How would you support getSmallest()?

5

8

0

8

1

6

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b

Priority Queue Summary
Data Structures Summary

Heap Add

How Do We Add to a Heap?

Challenge: Come up with an algorithm for add(x).
● How would we insert 3?

Runtime must be logarithmic.

3

5

1

6

1

35

7 7 8 5 6

Heap Add Demo

5

5

1

6

1

36

7 7 8

Insert 3?

Heap Add Demo

5

5

1

6

1

36

7 7 8 3

Insert 3.
● Add to end of heap temporarily.

Heap Add Demo

5

5

1

6

1

36

7 7 8 3

Insert 3.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place...

Heap Add Demo

5

3

1

6

1

36

7 7 8 5

Insert 3.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place...

Heap Add Demo

3

5

1

6

1

36

7 7 8 5

Insert 3.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place...

Heap Add Demo

3

5

1

6

1

36

7 7 8 5

Insert 3.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place.

This is my
true place.

Heap Add Demo

3

5

1

6

1

36

7 7 8 5

Insert 5.
● Add to end of heap temporarily.

5

Heap Add Demo

3

5

1

6

1

36

7 7 8 5

Insert 5.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place...

5

Heap Add Demo

3

5

1

6

1

35

7 7 8 5

Insert 5.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place...

6

Heap Add Demo

3

5

1

6

1

35

7 7 8 5

Insert 5.
● Add to end of heap temporarily.
● Swim up the hierarchy to your rightful place.

6

I am home. For
the first time in my
life. I am home.

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Heap Delete

How Do We Remove from a Heap?

Challenge: Come up with an algorithm for removeSmallest().

Runtime must be logarithmic.

5

5

3

6

3

65

7 7 8

Heap Delete Demo

3

5

1

6

1

35

7 7 8 5

Delete min.

6

Heap Delete Demo

3

5

1

6

1

35

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.

6

Heap Delete Demo

3

5

1

6

1

35

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.

6

What’s happening to me??

Wuh oh...

Heap Delete Demo

3

56

1

35

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.

6

What’s happening to me??

Heap Delete Demo

3

56

1

35

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks...

6

I’m not cut out for this...

Move aside, cretin.

Heap Delete Demo

3

56

6

35

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks...

1

Heap Delete Demo

3

56

3

65

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks...

1

Heap Delete Demo

3

56

3

65

7 7 8 5

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks.

1

Heap Delete Demo

3

56

3

65

7 7 8

Delete min.
● Swap the last item in the heap into the root.

5

ulp...

Heap Delete Demo

3

56

3

65

7 7 8

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks...

5Break tie arbitrarily.

Heap Delete Demo

5

56

3

65

7 7 8

Delete min.
● Swap the last item in the heap into the root.
● Then sink your way down the hierarchy, yielding to most qualified folks...

3
I won’t descend further.

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Recursive
Representation (1)

Heap Operations Summary

Given a heap, how do we implement PQ operations?
● getSmallest() - return the item in the root node.
● add(x) - place the new employee in the last position, and promote as high as

possible.
● removeSmallest() - assassinate the president (of the company), promote

the rightmost person in the company to president. Then demote repeatedly,
always taking the ‘better’ successor.

Remaining question: How would we do all this in Java?

How do we Represent a Tree in Java?

Approach 1a, 1b and 1c: Create mapping from node to children.

w

x y z

1a: Fixed-Width Nodes (BSTMap used this approach) public class Tree1A<Key> {
 Key k; // e.g. 0
 Tree1A left;
 Tree1A middle;
 Tree1A right;
 ...

w

zx y

How do we Represent a Tree in Java?

Approach 1a, 1b and 1c: Create mapping from node to children.

w

x y z

1b: Variable-Width Nodes

w

zx y

public class Tree1B<Key> {
 Key k; // e.g. 0
 Tree1B[] children;
 ...

How do we Represent a Tree in Java?

Approach 1a, 1b and 1c: Create mapping from node to children.

w

x y z

1c: Sibling Tree

public class Tree1C<Key> {
 Key k; // e.g. 0
 Tree1C favoredChild;
 Tree1C sibling;
 ...

w

zx y

How do we Represent a Tree in Java?

Approach 1a, 1b and 1c: Create mapping from node to children.

w

x y z

w

x y z

w

x y z

1a: Fixed-Width Nodes
1b: Variable-Width Nodes

1c: Sibling Tree

w

zx y

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Array
Representations
(2, 3, 3b)

How do we Represent a Tree in Java?

Approach 2: Store keys in an array. Store parentIDs in an array.
● Similar to what we did with disjointSets.

w x y z

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7

Key[] keys

int[] parents 0 0 0 0

k e v b g p y a d f j m r x

Key[] keys

int[] parents

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 1 1 2 2 3 3 4 4 5 5 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 8 9 10 11 12 13

public class Tree2<Key> {
 Key[] keys;
 int[] parents;
 ...

w

zx y

How do we Represent a Tree in Java?

Approach 3: Store keys in an array. Don’t store structure anywhere.
● To interpret array: Simply assume tree is complete.
● Obviously only works for “complete” trees.

w x y z

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7

Key[] keys

k e v b g p y a d f j m r x

Key[] keys

0 1 2 3 4 5 6 7 8 9 10 11 12 13

8 9 10 11 12 13

0 1 2 3
public class Tree3<Key> {
 Key[] keys;
 ...

w

zx y

A Deep Look at Approach 3

Challenge: Write the parent(k) method for approach 3.

w x y z

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7

Key[] keys

w

zx y

k e v b g p y a d f j m r x

Key[] keys

0 1 2 3 4 5 6 7 8 9 10 11 12 13

8 9 10 11 12 13

0 1 2 3

public class Tree3<Key> {
 Key[] keys;
 ...

public void swim(int k) {
 if (keys[parent(k)] ≻ keys[k]) {
 swap(k, parent(k));
 swim(parent(k));
 }
}

A Deep Look at Approach 3

Challenge: Write the parent(k) method for approach 3.

w x y z

e

b g

a d f j

v

p y

m r x

k0

1 2

3 4 5 6

7

Key[] keys

k e v b g p y a d f j m r x

Key[] keys

0 1 2 3 4 5 6 7 8 9 10 11 12 13

8 9 10 11 12 13

0 1 2 3

public class Tree3<Key> {
 Key[] keys;
 ...

public void swim(int k) {
 if (keys[parent(k)] ≻ keys[k]) {
 swap(k, parent(k));
 swim(parent(k));
 }
} public int parent(int k) {

 return (k - 1) / 2;
}

w

zx y

Tree Representations (Summary)

w

x y z

w

x y z

w

x y z

1a: Fixed Number of Links (One Per Child)
1b: Array of Child Links

1c: FirstBorn/Sibling Links

w x y zKey[] keys

int[] parents 0 0 0 0

0 1 2 3

w x y z

Key[] keys

2: Array of Keys, Array of Structure

3: Array of Keys

w

zx y

Approach 3B (book implementation): Leaving One Empty Spot

Approach 3b: Store keys in an array. Offset everything by 1 spot.
● Same as 3, but leave spot 0 empty.
● Makes computation of children/parents “nicer”.

○ leftChild(k) = k*2

○ rightChild(k) = k*2 + 1

○ parent(k) = k/2

w x y z

e

b g

a d f j

v

p y

m r x

k1

2 3

4 5 6 7

8

Key[] keys

w

zx y

k e v b g p y a d f j m r x

Key[] keys

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 10 11 12 13 14

-

0 1 2 3 4

-

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Priority Queue Summary
Data Structures Summary

Priority Queue
Summary

Heap Implementation of a Priority Queue

Notes:
● Why “priority queue”? Can think of position in tree as its “priority.”
● Heap is log N time AMORTIZED (some resizes, but no big deal).
● BST can have constant getSmallest if you keep a pointer to smallest.
● Heaps handle duplicate priorities much more naturally than BSTs.
● Array based heaps take less memory (very roughly about 1/3rd the memory

of representing a tree with approach 1a).

Ordered Array Bushy BST Hash Table Heap

add Θ(N) Θ(log N) Θ(1) Θ(log N)

getSmallest Θ(1) Θ(log N) Θ(N) Θ(1)

removeSmallest Θ(N) Θ(log N) Θ(N) Θ(log N)

Items with same priority hard to handle.

Some Implementation Questions

1. How does a PQ know how to determine which item in a PQ is larger?
a. What could we change so that there is a default comparison?

2. What constructors are needed to allow for different orderings?

/** (Min) Priority Queue: Allowing tracking and removal of the
 * smallest item in a priority queue. */
public interface MinPQ<Item> {

/** Adds the item to the priority queue. */
public void add(Item x);
/** Returns the smallest item in the priority queue. */
public Item getSmallest();
/** Removes the smallest item from the priority queue. */
public Item removeSmallest();
/** Returns the size of the priority queue. */
public int size();

}

Lecture 21, CS61B, Spring 2024

Priority Queue Introduction
• Introducing the Priority Queue
• Using a PQ
• Some Bad Implementations

Heaps
• Heap Definitions
• Heap Add
• Heap Delete

Tree Representations
• Recursive Representation (1)
• Array Representations (2, 3, 3b)

Data Structures Summary

Data Structures
Summary

The Search Problem

Given a stream of data, retrieve information of interest.
● Examples:

○ Website users post to personal page. Serve content only to friends.
○ Given logs for thousands of weather stations, display weather map for

specified date and time.

Search Data Structures (The particularly abstract ones)

Name Storage Operation(s) Primary Retrieval Operation Retrieve By:

List add(key)
insert(key, index)

get(index) index

Map put(key, value) get(key) key identity

Set add(key) containsKey(key) key identity

PQ add(key) getSmallest() key order (a.k.a. key size)

Disjoint Sets connect(int1, int2) isConnected(int1, int2) two int values

Diagram of Data Structures and ADTs (past semester version)

PQ

List

Set

Map

DisjointSets

Chaining HT

Linear Probing HT

LinkedList

Resizing Array

Heap

Red Black

BST (Vanilla)

B-Trees (2-3 / 2-3-4)

Heap

Chaining HT (lacks
order, very odd)

Ordered Linked List

Balanced Tree

Resizing Array

LinkedList

Quick Find

Quick Union

Weighted QU

WQUPC

Stack

Diagram of Data Structures and ADTs (past semester version)

PQ Heap Ordered Tree Separate Chaining HT Array of Buckets

Bucket

ArrayList

Resizing Array

LinkedList

BST (requires
comparable items)

Tree

Approach 1A

Approach 1B

Approach 1C

Approach 2

Approach 3

Approach 3B

HashSet (weird
choice)

Abstraction often happens in layers!

Diagram of Data Structures and ADTs (past semester version)

Specialized Searching Data Structures:

Set

PQ

Map

Sorted Set

Sorted Map

2-3 Tree

RedBlack

BST
In Java:
java.util.SortedSet

java.util.SortedMap

List

Stack

Queue

Deque

Linked List

Resizing Array
(slightly
suboptimal due
to resizing)

Don’t usually consider MinPQ and MaxPQ to be different data
structures, since we can just provide the opposite comparator.

Data Structures

Data Structure: A particular way of organizing data.
● We’ve covered many of the most fundamental abstract data types,

their common implementations, and the tradeoffs thereof.
● We’ll do two more in this class:

○ Tries, graphs.

